Math 150, Lecture Notes- Bonds Name

Section 4.2 Area
Sigma Notation

In the preceding section, you studied antidifferentiation. In this section, you will look
further into a problem introduced in Section 1.1—that of finding the area of a region
in the plane. At first glance, these two ideas may seem unrelated, but you will discover
in Section 4.4 that they are closely related by an extremely important theorem called
the Fundamental Theorem of Calculus.

This section begins by introducing a concise notation for sums. This notation is
called sigma notation because it uses the uppercase Greek letter sigma, written as 2.

Sigma Notation

The sum of n terms a,, a,, as, . . ., a, is written as

n
Eai=al+az+a3+---+a

i=1

n

where i is the index of summation, ¢; is the ith term of the sum, and the
upper and lower bounds of summation are n and 1.

\# The upper and lower bounds must be constant with respect to the index of summation.
However, the lower bound doesn’t have to be 1. Any integer less than or equal to the upper
bound is legitimate. |

Ex.1 Examples of Sigma Notation

o)}

a. i=1+2+3+4+5+6

(i+1)=14+2+3+4+5+6

=
e

Il
=

j2=32+42+52+62+ 77

e

j=3

d S l(k2+ 1)=1(12+ 1)+l(22+ 1)+ - -+l(n2+ 1)
“=\n n n n

e 3 fle) Ax = flx)Ax + fl) Ax + - - -+ flx,) Ax

From parts (a) and (b), notice that the same sum can be represented in different ways

using sigma notation.

Although any variable can be used as the index of summation i, j, and k are often
used. Notice in Example 1 that the index of summation does not appear in the terms

of the expanded sum.



The following properties of summation can be derived using the associative and
commutative properties of addition and the distributive property of addition over

multiplication. (In the first property, k is a constant.)

1. ikai = kiai
' i=1

i=1

2.

n n
=

(a, £ b,) = Zai + ibi
=1 =1

1

THEOREM 4.2 Summation Formulas
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Ex.2 Evaluating a Sum

Evaluate i

i+ 1
2
=1 n

for n = 10, 100, 1000, and 10,000.

n
i=1
10
100
1,000

10,000




In the table, note that the sum appears to approach a limit as n increases. Although
the discussion of limits at infinity in Section 3.5 applies to a variable x, where x can
be any real number, many of the same results hold true for limits involving the
variable n, where n is restricted to positive integer values. So, to find the limit of
(n + 3)/2n as n approaches infinity, you can write

1imn+3= lim <i+i>= lim (l-i-i)=l+0=l
2n 2 2

n—oo 2N n—oo \2n 2n n—oo \ 2

Area

In Euclidean geometry, the simplest type of plane region is a rectangle. Although
people often say that the formula for the area of a rectangle is A = bh, it is actually
more proper to say that this is the definition of the area of a rectangle.

From this definition, you can develop formulas for the areas of many other plane
regions. For example, to determine the area of a triangle, you can form a rectangle
whose area is twice that of the triangle, as shown in Figure 4.5. Once you know
how to find the area of a triangle, you can determine the area of any polygon by
subdividing the polygon into triangular regions, as shown in Figure 4.6.

b

Triangle: A = %bh

Parallelogram Hexagon Polygon Figure 4.5

Figure 4.6

Finding the areas of regions other than polygons is more difficult. The ancient
Greeks were able to determine formulas for the areas of some general regions
(principally those bounded by conics) by the exhaustion method. The clearest
description of this method was given by Archimedes. Essentially, the method is a
limiting process in which the area is squeezed between two polygons—one inscribed
in the region and one circumscribed about the region.

For instance, in Figure 4.7 the area of a circular region is approximated by an
n-sided inscribed polygon and an n-sided circumscribed polygon. For each value of n,
the area of the inscribed polygon is less than the area of the circle, and the area of the
circumscribed polygon is greater than the area of the circle. Moreover, as n increases,
the areas of both polygons become better and better approximations of the area of
the circle.




The Area of a Plane Region

Recall from Section 1.1 that the origins of calculus are connected to two classic
problems: the tangent line problem and the area problem. Example 3 begins the
investigation of the area problem.

Ex.3 Approximating the Area of a Plane Region

Use the five rectangles in Figure 4.8(a) and (b) to find rwo approximations of the area
of the region lying between the graph of

flx) = —x2+5
2
and the x-axis between x = 0 and x = 2. [0, —]

(a)

fx) = -x2+5

S

4 6 8
5 5 5

w3

(a) The area of the parabolic region is greater
than the area of the rectangles.

(b) y

fx)=—x2+5

4 6 8 0

5 5 5 5

[S1S)

(b) The area of the parabolic region is less
than the area of the rectangles.
Figure 4.8



Upper and Lower Sums

The procedure used in Example 3 can be generalized as follows. Consider a plane
region bounded above by the graph of a nonnegative, continuous function y = f(x), as
shown in Figure 4.9. The region is bounded below by the x-axis, and the left and right
boundaries of the region are the vertical lines x = a and x = b.

v

/ .
[ a b

The region under a curve
Figure 4.9

To approximate the area of the region, begin by subdividing the interval [a, b] into
n subintervals, each of width Ax = (b — a)/n, as shown in Figure 4.10. The
endpoints of the intervals are as follows.
a = x, X X, x,=b
s N - N s N —
a+ 0(Ax) <a+ 1(Ax) <a+ 2(Ax) < - - - < a + n(Ax)

Because f is continuous, the Extreme Value Theorem guarantees the existence of a
minimum and a maximum value of f(x) in each subinterval.
f(m;) = Minimum value of f(x) in ith subinterval

f(M;) = Maximum value of f(x) in ith subinterval

y

f(m,.)

/ a ’

IS}

The interval [a, b] is divided into n
b—a

subintervals of width Ax =

Figure 4.10



s(n) < (Area of region) < S(n)

y ) Y y=£(x)

S(n) 7

/a b [la b " /u P

S(II) / Figure 4.11

Area of inscribed rectangles Area of region Area of circumscribed

is less than area of region. rectangles is greater than
area of region.

Next, define an inscribed rectangle lying inside the ith subregion and a
circumscribed rectangle extending outside the ith subregion. The height of the ith
inscribed rectangle is f(m;) and the height of the ith circumscribed rectangle is f(M,).
For each i, the area of the inscribed rectangle is less than or equal to the area of the

circumscribed rectangle.

<Area of inscribed) = f(m,) Ax < f(M,) Ax = (

Area of circumscribed)
rectangle

rectangle

The sum of the areas of the inscribed rectangles is called a lower sum, and the sum
of the areas of the circumscribed rectangles is called an upper sum.

Lower sum = s(n) = f(m,) Ax Area of inscribed rectangles

Vi

f(MI) Ax Area of circumscribed rectangles

Vi

Il
—_

Upper sum = S(n) =

From Figure 4.11, you can see that the lower sum s(n) is less than or equal to the upper
sum S(n). Moreover, the actual area of the region lies between these two sums.

s(n) < (Area of region) < S(n)



Ex.4 Finding Upper and Lower Sums for a Region

Find the upper and lower sums for the region bounded by the graph of f(x) = x? and
the x-axis between x = 0 and x = 2.

Ax = b=a_ Left Endpoints
" 2(i — 1)
(a) mi = = n
s(n) = Ef(mi)Ax =
i=1 Al
[ =x?
3 e
2Ak
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Inscribed rectangles
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(b) M; = =
Sn) = Y f(M,) Ax = \
=1
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Circumscribed rectangles
Figure 4.12



Example 4 illustrates some important things about lower and upper sums. First,
notice that for any value of n, the lower sum is less than (or equal to) the upper sum.

Second, the difference between these two sums lessens as n increases. In fact, if you
take the limits as n — oo, both the upper sum and the lower sum approach %

1ims(n)=1im(§_ﬂ+i>=§ o
—00 oo \ 3 n 3n2 3 ower sum limi
. . 8 4 4\ § -
nll>n<;lo S(n) N nllH}o (3 + n + 3n2> —3 Upper sum limit

The next theorem shows that the equivalence of the limits (as n — oo) of the upper
and lower sums is not mere coincidence. It is true for all functions that are continuous
and nonnegative on the closed interval [a, b]. The proof of this theorem is best left to
a course in advanced calculus.

THEOREM 4.3 Limits of the Lower and Upper Sums

Let f be continuous and nonnegative on the interval [a, b]. The limits as n — co
of both the lower and upper sums exist and are equal to each other. That is,

n

lim s(n) = lim Ef(m,»)Ax

n—oc n—oo i=1
n

lim ' f(M;)Ax

n—co
! i=1

= lim S(n)

n—oo

where Ax = (b — a)/n and f(m,) and f(M,) are the minimum and maximum
values of f on the subinterval.

Because the same limit is attained for both the minimum value f(m;) and the
maximum value f(M,), it follows from the Squeeze Theorem (Theorem 1.8) that the
choice of x in the ith subinterval does not affect the limit. This means that you are free
to choose an arbitrary x-value in the ith subinterval, as in the following definition of
the area of a region in the plane.

Definition of the Area of a Region in the Plane

Let f be continuous and nonnegative on the interval [a, b]. The area of the y
region bounded by the graph of f, the x-axis, and the vertical lines x = a and f
x=bis

n
Area = lim ¥ f(c;)Ax,  x,_, < ¢ < x 2=
n—oo &4

fe)

1
1
1
1
1
. X

where Ax = (b — a)/n (see Figure 4.14). /a e -
Yo N

The width of the ith subinterval is
Ax =x; —x;_ .
Figure 4.13



Ex.5 Finding Area by the Limit Definition

Find the area of the region bounded by the graph of f(x) = 4 — x2, the x-axis, and the
vertical lines x = 1 and x = 2, as shown in Figure 4.15.

szb—a

n

i
n

Area = lim Y f(c;) Ax =

N—00 A=
i=1

The area of the region bounded by the graph
of f, the x-axis, x = l,andx = 2 s %
Figure 4.15




Ex.6 Finding Area by the Limit Definition
Find the area of the region bounded by the graph f(x) = x?, the x-axis, and the vertical
lines x = 0 and x = 1, as shown in Figure 4.14.

b—a
Ax = P ¢, = I
Area = lim S f(c,) Ax =

n—0o0 1

=

\ o . T

0,0) 0

The area of the region bounded by the graph
of f, the x-axis, x = 0,andx = 1 is3.
Figure 4.14




Ex.7 Finding Area of a Region Bounded by the y-axis, by the Limit Definition
Find the area of the region bounded by the graph of f(y) = y? and the y-axis for
0 =y =< 1, as shown in Figure 4.16.

Ax=b_a=
n

Area = lim ' f(c;) Ay =

0 :
n—oo =

|

0,0) |

The area of the region bounded by the graph
of fand the y-axisfor0 < y < 1is %
Figure 4.16




Ex.8 Finding Area of a Bounded Region

Find the both the upper and lower sums that bound the area of the shaded region. Use
rectangles of width 1. First, use the graphs of i = f(x) to show the graphical

representation for each of the respective sums. Then, show the correct algebraic
notation to find the value of each sum.
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